
Simplifying Distributed
Systems with Microsoft

Orleans

.NET Consultant @ Team4Talent

Microsoft MVP

Pluralsight author

Board member @ Visug

Content crew member @ Techorama BE + NL

Lindsey Broos

www.lindseybroos.be

lindsey@snowball.be

linkedin.com/in/lindsey-broos

Agenda

Distributed systems and their
challenges

How does Microsoft Orleans
make your life easier?

Distributed
Systems

What is a distributed system?
A distributed system is a system whose

components are located on different
networked computers, which communicate

and coordinate their actions by passing
messages to one another.

Distributed Systems

Distributed Systems

Challenges
when building
distributed
systems

Data Management

Latency

Scalabilty

Fault ToleranceConcurrency

Microsoft
Orleans

What is Microsoft Orleans?
A cross-platform framework

that simplifies building scalable,
fault-tolerant, and stateful applications

using a virtual actor model.

Actors can
- Receive messages
- Send messages
- Create other actors

The actor model

Basic building blocks

First described in 1973 by Hewitt, Bishop and Steiger

Virtual actors

Virtually always exist

Automatic instantiated

No need to know the location

Auto scale-out

Grains

Grains – silo

Grains – silo - cluster

Grains – silo - cluster

A sidestep: .NET Aspire
• A set of powerful tools, templates and

packages for building distributed
applications

• Improves the developer’s experience
when building distributed applications

DEMO: TicketRush

Grains

.NET objects

Single-threaded

Asynchronous

Messages

public interface IConcertGrain : IGrainWithIntegerKey

{

}

Grain lifecycle

public interface IConcertGrain : IGrainWithIntegerKey

{

 Task<int> GetAvailableTickets();

 Task<decimal> GetPrice();

 Task<string?> BuyTicket(Guid userId);

}

public class ConcertGrain: Grain, IConcertGrain

{

 private List<string> ticketIds;

 …

}

public class ConcertGrain: Grain, IConcertGrain

{

 private readonly IPersistentState<List<string>> _ticketIds;

 …

}

Grain lifecycle

DEMO: Grains

Grain communication

public class NewConcertSimulator

{

 private readonly IClusterClient _clusterClient;

 public NewConcertSimulator(IClusterClient clusterClient)

 {

 _clusterClient = clusterClient;

 }

 public Task CreateConcert(Concert concert)

 {

 var concertGrain = _clusterClient.GetGrain<IConcertGrain>(concert.Id);

 await concertGrain.SaveConcert(concert);

 }

}

TicketRush.zip

[GenerateSerializer]

public class Concert

{

 [Id(0)]

 public int Id { get; set; }

 [Id(1)]

 public string ConcertName { get; set; }

 [Id(2)]

 public decimal Price { get; set; }

}

TicketRush.zip

Grain communication

public class UserGrain: Grain, IUserGrain
{

 private readonly IGrainFactory _grainFactory;

 public UserGrain(IGrainFactory grainFactory)

 {

 _grainFactory = grainFactory;

 }

 public async Task<bool> BuyTicket(int concertId)

 {

 var concertGrain = _grainFactory.GetGrain<IConcertGrain>(concertId);

 var ticketId = await concertGrain.BuyTicket(this.GetPrimaryKey());

 }

}

TicketRush.zip

DEMO: Communication

Other useful features

Persistent state

Timers and Reminders

Observers

Streams

Transactions

…

DEMO: Other features

Is Microsoft Orleans
suitable for every project?

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Grains
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

